Measurement of Disease

P. Kaushik Bihar Animal Sciences University

Measurement of disease

Measurement of disease burden Prevalence, proportion etc Measurement of disease occurrence Incidence, death rate Measurement of risk

Odd ratio, Relative Risk

 Proportion: It represents the numcer of cases per survey population

 Prevalence: it is the total number of exiting cases in the population at risk without distinction between old or new cases • **Point Prevalence=** Number of existing cases at a point Population at risk at a point of time

Period Prevalence= Cases at the start of study + new cases Population at risk during the period Incidence : Incidence is the number of new cases that occur in a population over a specified period of time.

Incidence= New cases in a period of time
Population at risk

Components of an incidence rate:

- the number of new cases;
- the period of time over which the new cases occur.

Cumulative incidence

 The cumulative incidence, (also termed risk) : It is the proportion of non-diseased individuals at the beginning of a period of study that become diseased during the period:

No of animal that become diseased during a pd. No, of healthy animal at the beginning of the pd

Attack rate

- This applies for the cases which is for a short pd,due to brief exposure of infection, or because the risk of developing the
- Hence, when the period of risk is brief, the term attack rate is used to describe the proportion of animals that develop the disease.

Relationship between prevalence and incidence rate

• P= IxD

- Hence prevalence can change be due to:
- a change in incidence rate;
- a change in the average duration of the disease;
- a change in both incidence rate and duration.

Mortality rate

- Mortality rate (mortality density), is calculated as the number of death that occur in a population over a specified period of time.
- Mortality = Number of death in a period of time Population at risk during the pd.
- moratlity rate is disease specific measurment

Death rate

• The death rate is the total mortality rate for all diseases rather than one specific disease - in a population.

Case Fatality rate

 The tendency for a condition to cause the death of affected animals in a specified time, or we can say the number of death that has occurred due to the particular disease during the period

Survival

- It is the probability of individuals with a specific disease remaining alive for a specified length of time.
- S= N D/N

where:

- D = the number of deaths observed in a specified period of time,
- N = the number of newly diagnosed cases under observation during the same period of time.

So we can say that Survival is the complement of case fatality. Thus, for a given period of observation, the sum of the case fatality and survival should equal 1 (100%).

- Odd ratio is used to find out the probability of outcome of an event when there are two possible outcome,
- Relative risk is a ratio of the probability of an event occurring in the exposed group versus the probability of the event occurring in the non-exposed group.

(Odds Ra	tio (OR)	
Co	Cases	or 2 x 2) Tab Controls	le Total
Exposed	а	b	a+b
Unexposed	С	d	c+d
Total	a+c	b+d	a+b+c+d

OR = (a/c) / (b/d) = (a*d) / (b*c)

$RR = I_E / I_U$ = P(D|E) / P(D|U) = [a/(a+b)] / [c/(c+d)]

	Cases	Controls	Total
Exposed	а	b	a+b
Unexposed	C	d	c+d
Total	a+c	b+d	a+b+c+d

Contingency (or 2 x 2) Table

Relative Risk (RR)

